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The Schwinger quantum dynamical principle is used to calculate the free vacuum
persistence amplitude in the presence of a prescribed electromagnetic background, and
the probability that free pairs are created from the vacuum state. An explicit expression
of these amplitudes is obtained in the semi-classical approach, showing that, in this
approach, the particle production is a stochastic Poisson process.
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1. INTRODUCTION

External time-dependent electromagnetic backgrounds modify the structure
of the quantum vacuum, what manifest in the production and annihilation of parti-
cles and antiparticles. Some authors have been calculated the vacuum persistence
amplitude and the particle production in the case of an homogeneous electric field
using several methods (see Nikishov, 1970; Popov, 1972; Marinov and Popov,
1977; Haro, 2003; Haro, 2004b, etc.). Here we are interested in the production of
electrons and positrons in the presence of a no-homogeneous electric field (The
bossonic case has been studied in Haro (2004a)).

To accomplish with this program, firstly we are interested to deduce, from
the quantum electrodynamics in the Heisenberg picture, the so called Schwinger’s
dynamical principle. This principle shows the relation that exists between the first
variation of the “Free Vacuum-to-Free Vacuum” amplitude and the Green’s func-
tions that appear in quantum electrodynamics. As an application of this dynamical
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principle, we obtain the formula that provides the free vacuum persistence ampli-
tude.

Once we have obtained this probability, we deduce, using the Green’s func-
tions, the master formula that gives the probability that a prescribed number of
free pairs is created from the free vacuum state.

Finally, to obtain an explicit expression of the master formula we use the
Perturbation theory and the semi-classical approach. We show that the average
number of produced pairs at time τ from the vacuum state by a prescribed electric
field is

3α

32mc2
E(τ ),

where α ≡ e2

hc
is the fine structure constant, and E(τ ) is the energy of the field at

time τ .
And since, in the semi-classical limit, the creation of pairs is a stochastic

Poisson process, we will conclude that the probability that N pairs are created at
time τ is

1

N !

(
3α

32mc2
E(τ )

)N

exp

(
− 3α

32mc2
E(τ )

)
.

The paper is organized as follows. Section 2 is devoted to the definition of
the vacuum state in the presence of an external electromagnetic field, and the defi-
nition of the so called “in” and “out” vacuum states. In Section 3, the Schwinger’s
dynamical principle is deduced using the Heisenberg and Interaction pictures,
and the Green’s functions are used to describe the pair production phenomenon.
Finally, in Section 4 we calculate, using the semi-classical approach, the proba-
bility that N pairs are created from the vacuum state, and the average number of
produced pairs.

In the paper we will use the following notation:

x ≡ xµ = (ct, x); p ≡ pµ =
(

E

c
, p

)
; A ≡ Aµ = (V, A);

∂ ≡ ∂µ =
(

1

c

∂

∂t
,−∇

)
.

gµν = diag(1,−1,−1,−1).

|�S(t)〉 ≡ |�(t)〉 denotes the state |�(t)〉 in the Schrödinger picture.
|�H (t)〉 ≡ U

†
S (t, 0)|�(t)〉 denotes the state |�(t)〉 in the Heisenberg picture.

|�I (t)〉 ≡ U
†
0 (t, 0)|�(t)〉 denotes the state |�(t)〉 in the Interaction picture,

where US is the quantum evolution operator and U0 is the free quantum evolution
operator.
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In the same way:

B̂S(t) ≡ B̂(t) denotes the operator B̂(t) in the Schrödinger picture.
B̂H (t) ≡ U

†
S (t, 0)B̂(t)US(t, 0) denotes the operator B̂(t) in the Heisenberg

picture.
B̂I (t) ≡ U

†
0 (t, 0)B̂(t)U0(t, 0) denotes the operator B̂(t) in the Interaction

picture.

2. THE VACUUM STATE IN QUANTUM ELECTRODYNAMICS

Let Ĥ (t ; Aµ) be the quantum Hamiltonian operator. We assume that we
have the decomposition Ĥ (t ; Aµ) = ĤK (t ; A) + ĤP (t ; V ), where ĤK (t ; A) is the
kinetic energy operator and ĤP (t ; V ) is the potential energy operator.

Example 2.1. For the Dirac field, we have (see Schwinger, 1951a; Dittrich and
Reuter, 1984)

ĤK (t ; A) =
∫

R3
d3x

(
1

2
[ ˆ̄ψ(x), (−ihcγ∇ + mc2)ψ̂(x)] − 1

c
A(t, x)Ĵ (x)

)
.

ĤP (t ; V ) = 1

c

∫
R

3
d3xĴ 0(x)V (t, x),

where Ĵ µ(x) ≡ (Ĵ 0(x), Ĵ (x)) = ec
2 [ˆ̄ψ(x), γ µψ̂(x)] = − ec

2 γ
µ
βα[ψ̂α(x), ˆ̄ψβ(x)] is the

symmetrized current operator in the Schrödinger picture.

Let λ(t ; A) be the minimum eigenvalue of ĤK (t ; A). Define now the renormal-
ized quantum kinetic energy operator, ˆ̃HK (t ; A) ≡ ĤK (t ; A) − λ(t ; A)Id. Then,
the vacuum state at time t, denoted by |0A(t)〉, satisfies (see Dirac, 1934; Grib
et al., 1994; Dolby and Gull, 2001)

ˆ̃HK (t ; A)|0A(t)〉 = 0; Q̂|0A(t)〉 = 0,

where Q̂ is the charge operator.

Remark 2.1. In the case that Aµ = (V, 0), the operator ˆ̃HK (t ; 0) do not depend
on time, and it can be denoted by ˆ̃HK (0). Then the vacuum state, denoted by |00〉,
is independent on time and coincides with the free vacuum state.

Example 2.2. Consider the free Dirac field, and define

E±(p) = ±
√

c2p2 + m2c4; p
µ
± =

(
1

c
E±(p), p

)
.
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Taking the spinors with the following properties

(γµp
µ
± − mc)u±

α (p) = 0; α = 1, 2.

ū±
α (p)γ µu±

β (p) = ±2cp
µ
±δαβ ; ū±

α (p)u±
β (p) = ±2mc2δαβ,

we obtain the following decomposition of the Dirac field operator

ψ̂(x) = 1

(2πh)
3
2

2∑
σ=1

∫
R

3

d3p√
2E+(p)

(âσ (p)u+
σ (p) + b̂

†
−σ (−p)u−

σ (p))e
i
h

p.x
.

Then, the free vacuum state satisfies

âσ (p)|00〉 = b̂σ (p)|00〉 = 0; ∀p ∈ R
3, σ = 1, 2,

because for the free Dirac field we have

ˆ̃HK (0) =
2∑

σ=1

∫
R

3
d3pE+(p)(â†

σ (p)âσ (p) + b̂†σ (p)b̂σ (p)).

Consider now the following kinetic energy operator

ĤK (A) = 1

2

∫
R

3
d3x[ ˆ̄ψ(x)(γ · (−ihc∇ − eA) + mc2)ψ̂(x)],

where we have assumed that A is a constant vector independent on x.
Using the decomposition

ψ̂(x) = 1

(2πh)
3
2

2∑
σ=1

∫
R

3

d3p√
2E+(p − e

c
A)

(
ĉσ (p)u+

σ

(
p − e

c
A

)

+ d̂
†
−σ (−p)u−

σ

(
p − e

c
A

))
e

i
h

p.x
,

we can show that the renormalized kinetic energy operator is

ˆ̃HK (A) =
2∑

σ=1

∫
R

3
d3pE+

(
p − e

c
A

)
(ĉ†σ (p)ĉσ (p) + d̂†

σ (−p)d̂σ (−p)).

Then, the vacuum state, denoted by |0A〉, satisfies

ĉσ (p)|0A〉 = d̂σ (p)|0A〉 = 0; ∀p ∈ R
3, σ = 1, 2.

Note that we have the following relation

âσ (p) = 1

2mc2

√
E+(p)

E+
(
p − e

c
A

)
2∑

β=1

(
ĉβ(p)ū+

σ (p)u+
β

(
p − e

c
A

)

+ d̂
†
−β (−p)ū+

σ (p)u−
β

(
p − e

c
A

))
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b̂
†
−σ (−p) = −1

2mc2

√
E+(p)

E+
(
p − e

c
A

)
2∑

β=1

(
ĉβ(p)ū−

σ (p)u+
β

(
p − e

c
A

)

+ d̂
†
−β (−p)ū−

σ (p)u−
β

(
p − e

c
A

))
.

Finally, it is easy to check that for A �= 0, we have

ū+
σ (p)u−

β

(
p − e

c
A

)
�= 0; ū−

σ (p)u+
β

(
p − e

c
A

)
�= 0,

and consequently, |0A〉 �= |00〉, that is, the vacuum state depends on the vector
potential. This fact will be used in Section 3.1 in order to apply correctly the
Schwinger dynamical principle to calculate the vacuum persistence amplitude.

To finish this section, we introduce the “in” and “out” vacuum states defined
as follows: ∣∣0Aµ

in

〉 = lim
t→−∞

∣∣0A
H (t)

〉 = lim
t→−∞ U+

S (t, 0)|0A(t)〉.
∣∣0Aµ

out

〉 = lim
t→∞

∣∣0A
H (t)

〉 = lim
t→∞ U+

S (t, 0)|0A(t)〉.

3. THE QUANTUM DYNAMICAL PRINCIPLE

Let |〉 and |�〉 be two quantum states and define �τ ′,τ ≡ (cτ ′, cτ ) × R
3.

We assume that the renormalized quantum Hamiltonian in the Schrödinger picture
has the form

ˆ̃HK (0) + 1

c

∫
R

3
Aµ(x)Ĵ µ(x), (1)

where ˆ̃HK (0) denotes the renormalized free kinetic energy operator. Therefore
the quantum evolution operator in the Interaction picture is

UI (τ, τ ′) = T exp

(
− i

hc

∫
�τ ′ ,τ

d4y
1

c
Aµ(y)Ĵ µ

I (y)

)
,

where we have introduced the time ordering operator T .
If we introduce the potential Ãµ = Aµχ�τ ′,τ , where χ�τ ′ ,τ is the characteristic

function of the set �τ ′,τ , we can write

UI (τ, τ ′) = T exp

(
− i

hc

∫
R

4
d4y

1

c
Ãµ(y)Ĵ µ

I (y)

)
. (2)

Consider now the functional F , defined by

F[Ãµ] ≡ 〈H (τ )|�H (τ ′)〉 = 〈I (τ )|UI (τ, τ ′)|�I (τ ′)〉. (3)
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The first variation of the functional F at the point Ãµ in the direction of φµ

is (see for detail Giaquinta and Hildebrandt, 1996)

δF[Ãµ; φµ] = − i

hc

∫
R

4
d4y

1

c
φµ(y)

〈
H (τ )

∣∣Ĵ µ

H (y)
∣∣�H (τ ′)

〉
.

Now, introducing the functional L defined by

L[Ãµ] ≡ −1

c

∫
R

4
d4y

1

c
Ãµ(y)Ĵ µ

H (y),

we can find

δF[Ãµ; φµ] = i

h
〈H (τ )|δL[Ãµ; φµ]|�H (τ ′)〉. (4)

This is the so called Schwinger’s dynamical principle (see Schwinger,
1951b, formula 2.14; DeWitt, 1965). Now if we take the functional W[Ãµ] ≡
−ih log F[Ãµ], we have

δW[Ãµ; φµ] = 1

F[Ãµ]
〈H (τ )|δL[Ãµ; φµ]|�H (τ ′)〉.

= − 1

F[Ãµ]

1

c

∫
R

4
d4y

1

c
φµ(y)

〈
H (τ )

∣∣Ĵ µ

H (y)
∣∣�H (τ ′)

〉
.

Finally, introducing the average current density 〈Ĵ µ

H (y)〉 ≡ 1
F [Ãµ]

〈H (τ )|
Ĵ

µ

H (y)|�H (τ ′)〉, we obtain the following relation

δW[Ãµ; φµ] = −1

c

∫
R

4
d4y

1

c
φµ(y)

〈
Ĵ

µ

H (y)
〉
. (5)

This is the fundamental formula used by Schwinger to obtain an operational
expression to the free vacuum persistence amplitude (see Schwinger, 1951a).

3.1. Free Vacuum-to-Free Vacuum transitions

Here we consider the Dirac field. Taking the symmetrized current density
operator Ĵ

µ

H = ec
2 [ ˆ̄ψH, γ µψ̂H ], it is easy to check that

〈
Ĵ

µ

H (y)
〉 = −ie hcSp(γ µS[Ãµ](y, y)),

where S[Ãµ](x, x ′) = −i

hF [Ãµ]
〈H (τ )|T ψ̂H (x) ˆ̄ψH (x ′)|�H (τ ′)〉 is a Green function

of the Dirac field, S[Ãµ](y, y) ≡ 1
2 limy′→y(limy ′

0→y+
0

S[Ãµ](y, y ′) + limy ′
0→y0

−S[Ãµ](y, y ′)), and “Sp” means the trace in the spinor space.
Now, the problem is to determine this Green function. We are interested in

the particular case that the initial and final states are the free vacuum state, that is,
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when F[Ãµ] = 〈00
H (τ )|00

H (τ ′)〉. In this situation, the Green function is

S[Ãµ](x, x ′) = − i

h

1

〈00
H (τ )|00

H (τ ′)〉
〈
00

H (τ )|T ψ̂H (x) ˆ̄ψH (x ′)|00
H (τ ′)

〉
.

To determine this Green function, we write S[Ãµ](x, x ′) in the following
form

S[Ãµ](x, x ′) = − i

h

1

〈00|UI (τ, τ ′)|00〉 〈0
0|T ψ̂I (x) ˆ̄ψI (x ′)UI (τ, τ ′)|00〉,

where UI (τ, τ ′) is defined in formula (2). Then, expanding the exponential and
using the Wick’s Theorem we reach the following expression

S[Ãµ](x, x ′) = 〈x|Ŝ[0]
∞∑

n=0

(
e

c
Ãµγ µŜ[0]

)n

|x ′〉,

where Ŝ[0] = (ihγ µ∂µ − mc + iε)−1 is the free Feynman propagator in the op-
erator form. Finally, using the formula (Û − V̂ )−1 = Û−1 ∑∞

n=0 (V̂ Û−1)n (see
Feynman, 1951), we obtain

S[Ãµ](x, x ′) = 〈x|Ŝ[Ãµ]|x ′〉 = −i

∫ ∞

0
ds〈x| exp(is Ŝ−1[Ãµ])|x ′〉, (6)

where Ŝ[Ãµ] ≡ (γ µ(ih∂µ − e
c
Ãµ) − mc + iε)−1

Now we define,

V1[Ãµ] ≡ ihTr
∫ ∞

0

ds

s
exp(is Ŝ−1[Ãµ]); and V2[Ãµ] ≡ ihTr log(Ŝ[Ãµ]Ŝ−1[0]),

where we have introduced the trace in both spinor and configuration space. Then
we have δW[Ãµ; φµ] = δV1[Ãµ; φµ] = δV2[Ãµ; φµ], and consequently we obtain

W[Ãµ] = V1[Ãµ] − V1[0] = V2[Ãµ],

because W[0] = 0.

Remark 3.1. When the initial and final states are the free vacuum state, the real
part of the functional W[Ãµ] is called the “one-loop effective action” (see for
details Dittrich and Reuter, 1984).

Finally, we can conclude that the formula that provides the free vacuum
persistence amplitude is

〈
00

H (τ )|00
H (τ ′)

〉 = exp

(
−Tr

∫ ∞

0

ds

s
(eis Ŝ−1[Ãµ] − eis Ŝ−1[0])

)

= exp(−Tr log(Ŝ[Ãµ]Ŝ−1[0])). (7)
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This is the famous result obtained by Schwinger (1951a) and explained in
more detail in the Introduction of Schwinger (1953).

Note that, in the case that the potential vector A(x) vanishes when x0 → ±∞,
from (7) and the definition of the “in” and “out” vacuum states, we get〈

0Aµ

out|0Aµ

in

〉 = exp(−Tr log(Ŝ[Aµ]Ŝ−1[0])). (8)

Remark 3.2. If we assume that A(x) vanishes when x0 → −∞, and limx0→∞
A(x) = Ā, where Ā is a constant vector different from 0. Then, in this situation〈

0Aµ

out|0Aµ

in

〉 �= exp(−Tr log(Ŝ[Aµ]Ŝ−1[0])), (9)

because |00〉 �= |0Ā〉 (see Example 2.2). That is, the vacuum persistence amplitude
do not coincides with the free one.

3.2. Creation of Free Pairs

Here we study the free pair production from the free vacuum state. We want
to know the relation that exists between the probability that a prescribed number
of free pairs are created and the Green’s functions.

Since we study free particles, we use the Interaction picture. Then, using the
notation introduced in the Example 2.2, we have

ψ̂I (x)= 1

(2πh)
3
2

2∑
σ=1

∫
R

3

d3p√
2E+(p)

(âσ (p)u+
σ (p)e− i

h
p

µ
+xµ +b̂†σ (p)u−

−σ (−p)e
i
h
p

µ
+xµ ).

Denoted by ::, the normal product operator for free operators, it is easy to verify
that the current density can be written in the following form Ĵ

µ

I = ec : ˆ̄ψIγ
µψ̂I :,

and then, applying the Wick’s theorem to the formula (2), we can obtain the
master formula that relates the quantum evolution operator in the Interaction
picture with the Green function S[Ãµ](xj , x

′
j ) defined in formula (6) and with the

“free vacuum-to-free vacuum” amplitude e
i
h
W[Ãµ] obtained in formula (7)

UI (τ, τ ′) =: exp

(
i

h

(
W[Ãµ] −

∫
R

8
d4xd4x ′ ˆ̄ψI (x)

[
e

c
Ãµ(x)γ µδ(x − x ′)

+ e

c
Ãµ(x)γ µS[Ãµ](x, x ′)

e

c
Ãν(x ′)γ ν

]
ψ̂I (x ′)

))
:

If we use the operator Î [Ãµ] introduced in Schwinger (1953) formula 71 and de-
fined by the identity Ŝ[Ãµ] ≡ Ŝ[0] + Ŝ[0]Î [Ãµ]Ŝ[0], the master formula becomes

UI (τ, τ ′) =: exp

(
i

h

(
W[Ãµ] −

∫
R

8
d4xd4x ′ ˆ̄ψI (x)〈x|Î [Ãµ]|x ′〉ψ̂I (x ′)

))
:

(10)
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Let EN be the space generated by the states that contain N free pairs, that is,
the space generated by the vectors{

N∏
j=1

â†
αj

(pj )b̂†βj
(qj )|00〉; pj , qj ∈ R

3 and αj , βj ∈ {1, 2}
}

.

Let now |ξN 〉 ∈ EN . We want to obtain an operational formula that relate the
amplitude 〈ξ 1

H (τ )|00
H (τ ′)〉 with the operator Î [Ãµ]. It is clear that 〈ξN

H (τ )|00
H (τ ′)〉 =

〈ξN
I (τ )|UI (τ, τ ′)|00〉 because |00

I (τ ′)〉 = |00〉.
Therefore, using the formula (10) it is easy to check that

〈
ξN
H (τ )

∣∣00
H (τ ′)

〉 = exp

(
i

h
W[Ãµ]

) 〈
ξN
H (τ )

∣∣00
H (τ ′)

〉
R
,

where the relative amplitude 〈ξN
H (τ )|00

H (τ ′)〉R is

〈
ξN
H (τ )

∣∣00
H (τ ′)

〉
R

= 1

N !

(
− i

h

)N 〈
ξN
I (τ )

∣∣

×
∫

R
8N

d4x1 · · · d4x ′
N :

N∏
j=1

ˆ̄ψI (xj )〈xj |Î [Ãµ]|x ′
j 〉ψ̂I (x ′

j ) : |00〉.

Remark 3.3. Note that in this formula, the normal ordering operator has the same
effect that the time ordering operator.

We define now |1+
α1

(p1) · · · 1−
βN

(qN )〉 ≡ ∏N
j=1 â†

αj
(pj )b̂†βj

(qj )|00〉. Then an
elementary calculation shows that

UI (τ, τ ′)|00〉 = exp

(
i

h
W[Ãµ]

) [
|00〉

+
∞∑

N=1

1

N !

2∑
α1,...,βN=1

∫
R

6N

N∏
J=1

bαj βj
(pj , qj )

× |1+
α1

(p1) · · · 1−
βN

(qN )〉d3p1 · · · d3qN

]
, (11)

with

bαβ(p, q) = − i

h

∫
R

8
d4xd4x ′ψ̄+

α,p(x)〈x|Î [Ãµ]|x ′〉ψ−
β,q(x ′)

where we have introduced the notation

ψ̄+
α,p(x) ≡ 1

(2πh)
3
2

1√
2E+(p)

ū+
α (p)e

i
h
p

µ
+xµ

ψ−
β,q(x ′) ≡ 1

(2πh)
3
2

1√
2E+(q)

u−
−β(−q)e

i
h
q

µ
+x ′

µ .
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Finally, with the aid of formula (11), it is easy to obtain an operational formula
that gives the probability that N free pairs with prescribed momenta and spin are
created form the free vacuum state.

Remark 3.4. For the Klein–Gordon field the formula corresponding to (11) is
obtained in Haro (2004a).

4. PERTURBATIVE AND SEMI-CLASSICAL RESULTS

In this section we will calculate explicitly, in the first perturbative approx-
imation, the probability that pairs are created in the presence of a prescribed
no-homogeneous electric field. Assume that the potential Aµ = (V, 0) vanishes
when x0 → −∞. In this situation the vacuum state coincides with the free one,
and then, the probability that the vacuum state remains unchanged at time τ is
|〈00

H (τ )|00
in〉|2. In order to calculate this probability, we use the following pertur-

bative approximation (see formula (7))

−Tr log(Ŝ[Ãµ]Ŝ−1[0]) = Tr log
(

Id. − e

c
γ µÃµŜ[0]

)
≈ − e2

2c2
Tr(γ µÃµŜ[0])2.

Consequently, we have

∣∣〈00
H (τ )|00

in

〉∣∣2 = exp(−2Re Tr log(Ŝ[Ãµ]Ŝ−1[0]))

≈ exp

(
−e2

c2
Re Tr(γ µÃµŜ[0])2

)
, (12)

where Ãµ = χ(−∞,τ )×R
3 (V, 0) ≡ (Ṽ , 0).

A elementary but cumbersome calculation provides the following result (see
for details Schwinger, 1951a)

−e2

c2
Re Tr(γ µÃµŜ[0])2 = − e2π

6c2h2

∫
R

4
θ (π2h2v2 − m2c2)v2T4Ṽ (v)T4Ṽ (−v)

×
√

1 − m2c2

π2h2v2

(
2 + m2c2

π2h2v2

)
d4v, (13)

where, θ is the Heaviside step function, and T4f (p) ≡ ∫
R

4 f (x)e2πipxd4x denotes
the Fourier Transform of the function f .

Now, we calculate the formula (13) using the semi-classical approximation.
This approximation is based in the following steps, first we make the change of
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variables πhv0 = p, thus

−e2

c2
Re Tr(γ µÃµŜ[0])2

= − e2

6c2h3

∫
R

4
θ (p2 − π2h2v2 − m2c2)v2T4Ṽ

( p

πh
, v

)
T4Ṽ

(
− p

πh
,−v

)

×
√

1 − m2c2

p2 − π2h2v2

(
2 + m2c2

p2 − π2h2v2

)
d3v dp. (14)

Integrating by parts it is easy to check that

T4Ṽ
( p

πh
, v

)
≈ h

2ip
e

2icpτ

h

∫
R

3
V (τ, x)e−2πivxd3x ≡ h

2ip
e

2icpτ

h T3V (τ, v).

Then, using this approximation and the properties, of the Fourier Transform,
we obtain

−e2

c2
Re Tr(γ µÃµŜ[0])2

= − e2

96π2c2h

∫
R

4
θ (p2 − π2h2v2 − m2c2)T3∇V (τ, v)T3∇V (τ,−v)

× 1

p2

√
1 − m2c2

p2 − π2h2v2

(
2 + m2c2

p2 − π2h2v2

)
d3v dp. (15)

Finally, in the semi-classical approximation, we must replace π2h2v2 by 0,
and we obtain, after integration

−e2

c2
Re Tr(γ µÃµŜ[0])2 ≈ − 3α

32mc2
E(τ ), (16)

where α ≡ e2

hc
is the fine structure constant, and E(τ ) ≡ 1

8π

∫
R

3 |∇V (τ, x)|2d3x is
the energy of the electric field at time τ .

Once we have obtained this result, we can deduce that, using the perturbation
theory and the semi-classical approximation, the probability that the vacuum state
remains unchanged at time τ is

∣∣〈00
H (τ )

∣∣00
in

〉∣∣2 ≈ exp

(
− 3α

32mc2
E(τ )

)
.

Remark 4.1. In Haro (2003, 2004a), we have proved that, in the semi-classical
approximation, the particle production is a stochastic Poisson process, then we



Semi-Classical Calculation of the Particle Production in QED 1721

can deduce that the probability that N pairs are produced at time τ is

1

N !

(
3α

32mc2
E(τ )

)N

exp

(
− 3α

32mc2
E(τ )

)
,

and the average number of produced pairs is 3α
32mc2 E(τ ).

Remark 4.2. Assume that the potential (V, 0) is switched on and off. Suppose that
∂N−1V
∂tN−1 is a continuous function and suppose that ∂N V

∂tN
has a jump discontinuity in

the hyper-surface T × R
3. Then using the formula (14) and integration by parts,

it is easy to prove that, the average number of produced pairs after the field is
switched off, in the semi-classical approximation, is αO(h2N ). In particular, for
N = 0, the average number of produced pairs after the field is switched off is

3α

32mc2
lim
ε→0

1

8π

∫
R

3
|E(T + ε, x) − E(T − ε, x)|2d3x,

where E ≡ −∇V is the electric field.
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